Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation.

نویسندگان

  • Renaud Fulconis
  • Judith Mine
  • Aurélien Bancaud
  • Marie Dutreix
  • Jean-Louis Viovy
چکیده

The mechanisms of RecA-mediated three-strand homologous recombination are investigated at the single-molecule level, using magnetic tweezers. Probing the mechanical response of DNA molecules and nucleoprotein filaments in tension and in torsion allows a monitoring of the progression of the exchange in real time, both from the point of view of the RecA-bound single-stranded DNA and from that of the naked double-stranded DNA (dsDNA). We show that strand exchange is able to generate torsion even along a molecule with freely rotating ends. RecA readily depolymerizes during the reaction, a process presenting numerous advantages for the cell's 'protein economy' and for the management of topological constraints. Invasion of an untwisted dsDNA by a nucleoprotein filament leads to an exchanged duplex that remains topologically linked to the exchanged single strand, suggesting multiple initiations of strand exchange on the same molecule. Overall, our results seem to support several important assumptions of the monomer redistribution model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we...

متن کامل

Developing Single-Molecule TPM Experiments for Direct Observation of Successful RecA-Mediated Strand Exchange Reaction

RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing an...

متن کامل

On the mechanism of RecA-mediated repair of double-strand breaks: no role for four-strand DNA pairing intermediates.

RecA protein will bind to a gapped duplex DNA molecule and promote a DNA strand exchange with a second homologous linear duplex. A double-strand break in the second duplex is efficiently bypassed in the course of these reactions. We demonstrate that the bypass of double-strand breaks is not explained by a mechanism involving homologous interactions between two duplex DNA molecules, but instead ...

متن کامل

Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension

Homologous recombination (HR) is a central process of genome biology driven by a conserved recombinase, which catalyses the pairing of single-stranded DNA (ssDNA) with double-stranded DNA to generate a D-loop intermediate. Bacterial RadA is a conserved HR effector acting with RecA recombinase to promote ssDNA integration. The mechanism of this RadA-mediated assistance to RecA is unknown. Here, ...

متن کامل

Dynamics of RecA filaments on single-stranded DNA

RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA-ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 25 18  شماره 

صفحات  -

تاریخ انتشار 2006